Difference between revisions of "AY Honors/Model Railroad/Answer Key/es"

From Pathfinder Wiki
< AY Honors‎ | Model RailroadAY Honors/Model Railroad/Answer Key/es
(Created page with "Especialidades JA/Trenmodelismo/Respuestas")
(Created page with "</noinclude> <noinclude>")
Line 28: Line 28:
 
{{CloseReq}} <!-- 2b -->
 
{{CloseReq}} <!-- 2b -->
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=2c}} <!--T:7-->
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=2c}} <!--T:7-->
<noinclude><div lang="en" dir="ltr" class="mw-content-ltr">
+
<noinclude></noinclude>
</noinclude>
 
[[File:NECtrain3967.jpg|thumb|200px|An Electric Locomotive]]
 
Electric locomotives get power to turn their wheels from electric motors housed inside. Most such locomotives receive their electrical power from overhead wires or an additional rail running alongside the rails used by the wheels. Some electric locomotives employ onboard batteries to drive them. Electricity became the preferred way of driving trains that had to travel underground or through frequent tunnels because they produce no exhaust as diesel or gasoline engines do. Another advantage is that they are virtually silent when operating and are easier to maintain because they utilize fewer moving parts than mechanical combustion engines.
 
{{clear}}
 
</div>
 
  
<div lang="en" dir="ltr" class="mw-content-ltr">
+
<noinclude></noinclude>
<noinclude>
 
</div></noinclude>
 
 
{{CloseReq}} <!-- 2c -->
 
{{CloseReq}} <!-- 2c -->
 
{{CloseReq}} <!-- 2 -->
 
{{CloseReq}} <!-- 2 -->
Line 47: Line 40:
 
</div>
 
</div>
  
<div lang="en" dir="ltr" class="mw-content-ltr">
+
{{clear}}
The words scale and gauge seem at first to be used interchangeably in model railways, but their meanings are different. Scale is the model's measurement as a proportion to the original, while gauge is the measurement between the two running rails of the track.
 
</div>
 
  
<div lang="en" dir="ltr" class="mw-content-ltr">
+
{{clear}}
{| border=1 align="center"
 
|-
 
!Name || Scale || Gauge
 
|-
 
| G scale ||1:22.5 || {{units|45 mm|1.75 inches}}
 
|-
 
| Gauge 1 ||1:32 ||{{units|44.45 mm|1.75 inches}}
 
|-
 
| 0 scale ||1:43 or 1:48 ||{{units|32 mm|1.25 inches}}
 
|-
 
| H0 scale ||1:87 ||{{units|16.5 mm|0.65 inches}}
 
|-
 
| TT scale ||1:120 ||{{units|12 mm|0.47 inches}}
 
|-
 
| N scale ||1:148 to 1:160 || {{units|9 mm|0.354 inches}}
 
|-
 
| Z scale ||1:220 ||{{units|6.5 mm|0.256 inches}}
 
|}
 
</div>
 
  
<div lang="en" dir="ltr" class="mw-content-ltr">
+
<noinclude></noinclude>
<noinclude>
 
</div></noinclude>
 
 
{{CloseReq}} <!-- 3 -->
 
{{CloseReq}} <!-- 3 -->
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=4}}
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=4}}
Line 114: Line 84:
 
</div>
 
</div>
  
<div lang="en" dir="ltr" class="mw-content-ltr">
+
<noinclude></noinclude>
<noinclude>
 
</div></noinclude>
 
 
{{CloseReq}} <!-- 4 -->
 
{{CloseReq}} <!-- 4 -->
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=5}}
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=5}}
Line 144: Line 112:
 
</div></noinclude>
 
</div></noinclude>
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=6a}}
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=6a}}
<noinclude><div lang="en" dir="ltr" class="mw-content-ltr">
+
<noinclude></noinclude>
</noinclude>
 
==== Covered Hopper ====
 
[[Image:6619.JPG|thumb|200px|Covered hopper]]
 
Structurally, a covered hopper is very similar to an open­top hopper car. What distinguishes this type of car from an open hopper is the car's roof, and also the car's overall size. Covered hoppers typically carry loads of less dense, and therefore lighter, materials, so they are built to a higher cubic capacity than open top hoppers.
 
{{clear}}
 
</div>
 
  
<div lang="en" dir="ltr" class="mw-content-ltr">
 
====Box Car====
 
[[Image:CIL 1620 20050710 IN Linden.jpg|thumb|200px|Box car]]
 
A boxcar (the American term; the British call this kind of car a "goods van" while in Australia, they are usually referred to as "louvre vans") is a railroad car that is enclosed and generally used to carry general freight. The boxcar, while not the simplest freight car design, is probably the most versatile, since it can carry most loads. Boxcars have side doors of varying size and operation, and some include end doors and adjustable bulkheads to load very large items.
 
 
{{clear}}
 
{{clear}}
</div>
 
  
<div lang="en" dir="ltr" class="mw-content-ltr">
 
====Container Car====
 
[[Image:Containerzug 100 7207.jpg|thumb|200px|Container cars]]
 
''Containerization'' is a system of intermodal freight transport cargo transport using standard ISO containers known as ''shipping containers'' that can be loaded and sealed intact onto container ships, railroad cars, planes, and trucks. The introduction of containers resulted in vast improvements in port handling efficiency, thus lowering costs and helping lower freight charges and, in turn, boosting trade flows. Almost every manufactured product humans consume spends some time in a container.
 
 
{{clear}}
 
{{clear}}
====Flat car====
 
[[Image:JNR type tora70000 flatcar.jpg|thumb|200px|Flat car]]
 
A flatcar (also flat car) is a piece of railroad rolling stock that consists of an open, flat deck on four or six wheels or a pair of trucks (US) or bogies (UK). The deck of the car can be wood or steel, and the sides of the deck can include pockets for stakes or tie-down points to secure loads. Flatcars designed for carrying machinery have sliding chain assemblies recessed in the deck. Flatcars are used for loads that are too large or cumbersome to load in enclosed cars such as boxcars. They are also often used to transport containers or trailers in intermodal shipping.
 
{{clear}}
 
====Gondola====
 
[[Image:PhosphateGon.JPG|thumb|200px|Gondola car]]
 
A gondola is an open-top type of rolling stock that is used for carrying loose bulk materials. Because of its low side walls, gondolas are used to carry either very dense material, such as steel plates or coils, or bulky items such as prefabricated pieces of rail track.
 
{{clear}}
 
====Refrigerator Car====
 
[[Image:ARMN 761511 20050529 IL Rochelle.jpg|thumb|200px|Modern refrigerator car: note the grill at the lower right (the car's "A" end) where the mechanical refrigeration unit is housed.]]
 
A refrigerator car (or "reefer") is a refrigerated boxcar, a piece of railroad rolling stock designed to carry perishable freight at specific temperatures. Refrigerator cars differ from simple insulated boxcars and ventilated boxcars (commonly used for transporting fruit), neither of which are fitted with cooling apparatus. Reefers were originally ice-cooled, but now are equipped with any one of a variety of mechanical refrigeration systems.
 
{{clear}}
 
</div>
 
  
<div lang="en" dir="ltr" class="mw-content-ltr">
 
====Stock Car====
 
In railroad terminology, a stock car is a type of rolling stock used for carrying livestock (not carcasses) to market. A traditional stock car resembles a boxcar with slats missing in the car's side (and sometimes end) for the purpose of providing ventilation; stock cars can be single-level for large animals such as cattle or horses, or they can have two or three levels for smaller animals such as sheep, pigs, and poultry.
 
 
{{clear}}
 
{{clear}}
====Tank Car====
 
[[Image:TILX290344.JPG|thumb|200px|Tank car]]
 
A tank car is a type of railroad rolling stock designed to transport liquid and gaseous commodities. Outside of North America, they are also known as tank wagons or tanker wagons.
 
{{clear}}
 
</div>
 
  
<div lang="en" dir="ltr" class="mw-content-ltr">
+
<noinclude></noinclude>
<noinclude>
 
</div></noinclude>
 
 
{{CloseReq}} <!-- 6a -->
 
{{CloseReq}} <!-- 6a -->
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=6b}} <!--T:16-->
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=6b}} <!--T:16-->
<noinclude><div lang="en" dir="ltr" class="mw-content-ltr">
+
<noinclude></noinclude>
</noinclude>
 
====Coach Cars====
 
[[File:UICX Rome.jpg|thumb|200px|A coach car in Rome]]
 
The most basic passenger car, the coach car is lined with rows of seats like a bus. In some cases, a set of seats will face each other making it possible for passengers to pass the time in conversation. Passengers with carry-on baggage usually find overhead or under-seat storage available. In large, metropolitan areas, many people ride on the coach cars of their commuter trains every day to get to and from work. Some coach cars have seating on two levels which doubles their capacity to transport passengers.
 
{{clear}}
 
</div>
 
  
<div lang="en" dir="ltr" class="mw-content-ltr">
 
====Dining Cars====
 
[[File:Buffet dining car SBB.jpg|thumb|200px|A Swiss dining car modeled by Roco]]
 
A dining car serves food to its passengers. Its like a long, narrow restaurant on wheels. The rail line must employ extra personnel to prepare food and wait on the passengers. A more limited version of the dining car is the "lounge" car, which serves only refreshments and can provide passengers with larger, more comfortable seats rather than tables to sit at.
 
 
{{clear}}
 
{{clear}}
</div>
 
  
<div lang="en" dir="ltr" class="mw-content-ltr">
 
====Observation Cars====
 
[[File:VIA Passenger Train.jpg|thumb|200px|A Canadian observation car]]
 
The observation car is almost always the last car in a passenger train in order to take advantage of the view from the rear of the train. It might have other features that provide sleeping, refreshments or food, but it almost always has larger windows around the car and a U-shaped lounge at the end where passengers can see the view where the train has just traversed. Observation cars modeled on older era railroads might have a small open-air porch off the rear of the last car.
 
 
{{clear}}
 
{{clear}}
</div>
 
  
<div lang="en" dir="ltr" class="mw-content-ltr">
 
====Sleeping Cars====
 
[[File:Type T2 sleeping car.jpg|thumb|200px|A model sleeping car by Rivarossi]]
 
"Sleepers" are sometimes called "Pullman cars" in the United States because of the Pullman Company that manufactured a great deal of them beginning in the mid-1800's. Some beds are designed to either roll or fold out of the way or convert into seats for daytime use, while some sleeping compartments look like small personal apartments with their own bathrooms.
 
 
{{clear}}
 
{{clear}}
</div>
 
  
<div lang="en" dir="ltr" class="mw-content-ltr">
+
<noinclude></noinclude>
<noinclude>
 
</div></noinclude>
 
 
{{CloseReq}} <!-- 6b -->
 
{{CloseReq}} <!-- 6b -->
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=6c}} <!--T:20-->
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=6c}} <!--T:20-->
<noinclude><div lang="en" dir="ltr" class="mw-content-ltr">
+
<noinclude></noinclude>
</noinclude>
 
[[File:Alco 2-6-6 NYC.jpg|thumb|200px|A New York 2-6-6 Locomotive]]
 
[[File:Central Sucre 2-4-0.jpg|thumb|200px|A Central Sucre 2-4-0 Locomotive]]
 
[[File:92220 Evening Star (Dave Cooper).jpg|thumb|200px|Standard Class 9F 2-10-0 Locomotive]]
 
Steam locomotives are described most commonly by how many wheels they have in each of three sections. The most notable set of wheels are the drive wheels which are usually larger and are connected by the rods which power them. The other two sets of wheels are both smaller and lie ahead of and behind the central drive wheels. Since there are at most three sets of wheels, a locomotive classification will have three numbers separated by dashes. If a locomotive has only drive wheels, the first and last numbers will still appear, but will both be zero. This classification system counts all the wheels (both sides) so when looking at the side of a locomotive, remember to multiply what you see by two.
 
</div>
 
  
<div lang="en" dir="ltr" class="mw-content-ltr">
+
{{clear}}
Pictured to the right are a 2-6-6, a 2-4-0, and a 2-10-0.
 
</div>
 
  
<div lang="en" dir="ltr" class="mw-content-ltr">
 
''An excellent diagram with all of a Steam Locomotive's parts is available at Wikipedia: [[w:Steam_locomotive_parts|Steam Locomotive Parts]].''
 
 
{{clear}}
 
{{clear}}
</div>
 
  
<div lang="en" dir="ltr" class="mw-content-ltr">
+
<noinclude></noinclude>
<noinclude>
 
</div></noinclude>
 
 
{{CloseReq}} <!-- 6c -->
 
{{CloseReq}} <!-- 6c -->
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=6d}} <!--T:23-->
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=6d}} <!--T:23-->
<noinclude><div lang="en" dir="ltr" class="mw-content-ltr">
+
<noinclude></noinclude>
</noinclude>
 
====Uncontrolled Crossings ====
 
[[File:American Crossbuck.jpg|thumb|150px|The American Crossbuck]]
 
"Open" or "Uncontrolled" crossings utilize a sign with or without flashing lights and an audible bell warning. These are considered 'open' because there is no barricade to the passage of pedestrians or traffic. In America, the 'crossbuck' is most typically seen at graded crossings. This is the familiar white "X" shape with the words "RAILROAD" and "CROSSING" printed on them.
 
{{clear}}
 
</div>
 
  
<div lang="en" dir="ltr" class="mw-content-ltr">
 
====Controlled Crossings ====
 
[[File:Finnish level crossing activated.jpg|thumb|150px|Gated Crossing in Finland]]
 
The most typical method of controlling a railroad crossing is with automatic close-able gates. In addition to flashing lights and warning bell, the gates make it difficult for cars or pedestrians to cross the tracks when they are down. Gated crossings have become more elaborate in recent years because accidents can still occur if cars try to drive around the gates.
 
 
{{clear}}
 
{{clear}}
</div>
 
  
<div lang="en" dir="ltr" class="mw-content-ltr">
+
<noinclude></noinclude>
<noinclude>
 
</div></noinclude>
 
 
{{CloseReq}} <!-- 6d -->
 
{{CloseReq}} <!-- 6d -->
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=6e}} <!--T:25-->
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=6e}} <!--T:25-->
<noinclude><div lang="en" dir="ltr" class="mw-content-ltr">
+
<noinclude></noinclude>
</noinclude>
 
====Mechanical Semaphore Signals ====
 
[[File:Lower Signal 1.jpg|thumb|100px|Mechanical Semaphore Signal]]
 
Mechanical semaphores utilize a moveable arm (or 'blade') whose position indicates how approaching trains may proceed. A set of differently colored lenses are also mounted on the arm, each passing in front of a stationary light when the arm moves, so that the semaphore can effectively signal trains at night.
 
</div>
 
  
<div lang="en" dir="ltr" class="mw-content-ltr">
 
====Colored Light Signals ====
 
[[File:Railroad lamp-2.jpg|thumb|100px|Colored Light Signal]]
 
These signals control train movements by displaying one of several colors of lights. They can also position the lights differently in order to send additional information to the engineer.
 
 
{{clear}}
 
{{clear}}
</div>
 
  
<div lang="en" dir="ltr" class="mw-content-ltr">
+
<noinclude></noinclude>
<noinclude>
 
</div></noinclude>
 
 
{{CloseReq}} <!-- 6e -->
 
{{CloseReq}} <!-- 6e -->
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=6f}} <!--T:27-->
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=6f}} <!--T:27-->
<noinclude><div lang="en" dir="ltr" class="mw-content-ltr">
+
<noinclude></noinclude>
</noinclude>
 
Besides track, locomotives and cars, a realistic model railroad will probably have several structures as part of the layout, such as:
 
</div>
 
  
<div lang="en" dir="ltr" class="mw-content-ltr">
+
{{clear}}
<gallery perrow=3 widths=220px>
 
File:RRTrussBridgeSideView.jpg|<center>A Truss Bridge</center>
 
File:Wellington, llinois elevator.png |<center>A Grain Elevator</center>
 
File:EBT Roundhouse 2.jpg|<center>A Roundhouse with Turntable</center>
 
File:Abfaltersbach station.JPG|<center>A Station</center>
 
File:Madison, NJ, train station platform.jpg|<center>A Platform</center>
 
File:TchopitoulasIllinoisCentralWarehouse.jpg|<center>A Warehouse</center>
 
</gallery>
 
</div>
 
  
<div lang="en" dir="ltr" class="mw-content-ltr">
+
<noinclude></noinclude>
<noinclude>
 
</div></noinclude>
 
 
{{CloseReq}} <!-- 6f -->
 
{{CloseReq}} <!-- 6f -->
 
{{CloseReq}} <!-- 6 -->
 
{{CloseReq}} <!-- 6 -->
Line 316: Line 171:
 
</div></noinclude>
 
</div></noinclude>
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=7a}}
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=7a}}
<noinclude><div lang="en" dir="ltr" class="mw-content-ltr">
+
<noinclude></noinclude>
</noinclude>
+
<noinclude></noinclude>
Rock or gravel poured between railroad ties to secure them in place and stabilize the track.
 
<noinclude>
 
</div></noinclude>
 
 
{{CloseReq}} <!-- 7a -->
 
{{CloseReq}} <!-- 7a -->
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=7b}}
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=7b}}
<noinclude><div lang="en" dir="ltr" class="mw-content-ltr">
+
<noinclude></noinclude>
</noinclude>
+
<noinclude></noinclude>
Driving wheels on a steam locomotive with a large number of wheel sets. These were driving wheels without the usual flanges, allowing a larger number of wheels to negotiate a turn without binding up against the rails.
 
<noinclude>
 
</div></noinclude>
 
 
{{CloseReq}} <!-- 7b -->
 
{{CloseReq}} <!-- 7b -->
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=7c}}
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=7c}}
<noinclude><div lang="en" dir="ltr" class="mw-content-ltr">
+
<noinclude></noinclude>
</noinclude>
+
<noinclude></noinclude>
A section of model track which is electrically insulated from its surrounding sections so that engines on it can be controlled independent of trains on other engines.
 
<noinclude>
 
</div></noinclude>
 
 
{{CloseReq}} <!-- 7c -->
 
{{CloseReq}} <!-- 7c -->
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=7d}}
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=7d}}
<noinclude><div lang="en" dir="ltr" class="mw-content-ltr">
+
<noinclude></noinclude>
</noinclude>
+
<noinclude></noinclude>
A beam that transfers the weight of a railcar to its truck.
 
<noinclude>
 
</div></noinclude>
 
 
{{CloseReq}} <!-- 7d -->
 
{{CloseReq}} <!-- 7d -->
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=7e}}
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=7e}}
<noinclude><div lang="en" dir="ltr" class="mw-content-ltr">
+
<noinclude></noinclude>
</noinclude>
+
<noinclude></noinclude>
A place where pedestrian or automobile traffic crosses the railroad.
 
<noinclude>
 
</div></noinclude>
 
 
{{CloseReq}} <!-- 7e -->
 
{{CloseReq}} <!-- 7e -->
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=7f}}
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=7f}}

Revision as of 13:52, 2 May 2021

Other languages:
English • ‎español
Trenmodelismo

Nivel de destreza

2

Año

1967

Version

15.11.2024

Autoridad de aprobación

Asociación General

Model Railroading AY Honor.png
Trenmodelismo
Artes y actividades manuales
Nivel de destreza
123
Autoridad de aprobación
Asociación General
Año de introducción
1967
Vea también


1

Dar la historia y el desarrollo de trenmodelismo.



2

Decir la diferencia en como los siguientes prototipos obtienen la fuerza motriz para operar:


2a

Vapor



2b

Diesel



2c

Eléctrica




3

Conocer el nombre, escala, y el ancho de vía de ferrocarril de cuatro modelos de medidores.

The six most popular scales used are: G scale, Gauge 1, O scale, H0 scale (in Britain, the similarly sized 00 is used), TT scale, and N scale (1:160), although there is growing interest in Z scale. H0 scale is the single most popular scale of model railroad. Popular narrow-gauge scales include HOn3 Scale and Nn3, which are the same scale as HO and N, except with a narrower spacing between the tracks (in these examples, a scale three feet instead of the 4'8.5" standard gauge).


4

Conocer las formas y los nombres de al menos ocho formaciones de vías.

Oval

Oval Layout Design

The simplest layout for a model railroad and the starting point for most designs. In this design, two straightaway segments are connected by a semi-circle at each end. This is also the only layout which can easily be created with sectional track without the use of a manufacturer-specific design. Curved sectional track is sold by radii (half the distance across the semi-circle) and a box of such track sections will almost always create exactly half a circle. The two straightaway sections will usually utilize multiple pieces of sectional straight track, as desired by the modeler.

Figure-Eight

Figure-Eight Layout Design

The second most common beginner's layout. This layout is best accomplished by purchasing it as a single set or following a manufacturer's layout design using their sectional track. The intersection in the center of the layout can either be accomplished by a piece of crossover track, or by elevating one track over the other. In the latter case, a set of piers or risers will be needed to raise the track at an appropriate rate.

Twice-Around

Twice-Around Layout Design

A modification of the figure-eight, in which one end-loop is contained within the other. The crossover here is not at 90° like in the basic figure-eight example and can be accomplished by using a alternately angled crossover piece or by using elevated track to pass one track over the other. The twice-around layout design allows the train to run continuously for longer than the simple oval before reaching its starting point.

Point-to-Point

Point-to-Point Layout Design

This design does not allow a train to run continuously indefinitely, as you might imagine most plans would allow. However, this is the design that most closely resembles real-life railroad operation, since real-life railroads run across country, not in loops or circles. You can construct more elaborate yards at each end in order to enjoy the complexities of real-world operation.

Out-and-Back

Out-and-Back Layout Design

This design approximates real-world operation, as each train must make a journey before it returns to the yard from which it originated. Although real freight never returns to its origin the same way it left, this arrangement does allows you to concentrate your time and resources on one yard instead of the two required in a Point-to-Point design (above).

Loop-to-Loop

Loop-to-Loop Layout Design

This design diverges from realistic operation, but does allow the operator to interact with a continuous-running train. A yard can be added in the middle of the layout to simulate freight coming in from each direction. When modeling with two-rail scales, such as HO and smaller, special wiring will be required to insulate each loop from the rest of the line and allow the direction to be reversed on the mainline.

Dog Bone

Dog-Bone Layout Design

This design is similar to the loop-to-loop design, but allows for continuous running without intervention from an operator. In addition, the two tracks running side-by-side simulate the double-track lines often seen in real life.

Twisted Dog Bone

Twisted-Dog-Bone Layout Design

This design is adds additional length to the mainline featured in the basic dog-bone design (above). Keeping one or both of the end-loops out of sight allows this layout to very realistically simulate the long distance running of a real railroad.


5

Conocer al menos seis puntos para comprobar el mantenimiento de un diseño de ferrocarril modelo.

Cleaning & Checking Basic Trackwork

Most model railroads receive power for their electric motors through the tracks they run on. Thus, track must be kept clean and free of even the smallest obstructions. A train running on a dirty track does not operate smoothly or realistically, or may not run at all! The space between rails must also be maintained, though this is more of an issue when individual rails and ties have been laid down by hand. Sectional track usually maintains its proper gauge (space between the rails). Rail cleaning solution can be safely wiped across model track and track-cleaning cars are also available for running around the layout and cleaning hard-to-reach places.

Checking Wheels and Couplers

Locomotives and cars are kept rolling along together by various types of 'couplers.' These can be very tiny on the smaller model railroad scales, but in any case, they must be kept clean and properly hooked together for a train to run along smoothly. Another common problem is derailment when a car's wheels come off the track. This can also be harder to detect on smaller scale trains, but it will eventually get noticed as cars may tip completely off the track. Nevertheless, derailment is the most common operating problem encountered and should be one of the first possibility to check when things are going wrong.

Lubricating Engine Drive Mechanisms

Most model locomotives are powered by electric motors which involve a minimum of moving parts. There are typically tiny gears used in transferring the turning motor's power to the drive wheels of the locomotive. These are easily lubricated with special grease and/or oil available from a hobby supply store. Be careful to follow both the engine and lubricant manufacturers' instructions. Most wheels on other non-powered cars do not need to be oiled or greased except in rare cases.

Detailing Scenes & Structures

Model structures and landscape gather dust, making them look less realistic. These elements of a typical layout should be well anchored with adhesive when they are first installed so that their surfaces can be brushed clean, repainted, re-weathered and even vacuumed. In addition, its fun and rewarding to keep a layout fresh by installing new structures or creating new track-side scenes once your basic modeling is complete.

Testing Electrical Connections

Most model locomotives receive their power from the tracks below through one or more of their wheel sets. Since these wheels are turning, they transmit their power through stationary metal brushes that maintain contact with the tiny axle running between these wheels. These brushes should be kept clean and checked whenever an electrical problem is suspected. In addition, the wires which run from the operator's power pack to the rails themselves can become tangled, shorted out (when they inadvertently touch each other), or disconnected all leading to potential breakdown in the power supplied to the model railroad. A simple electric meter available from a hobby or electronics store can help determine where a breakdown is occurring by testing (1) the output of the power pack directly, (2) the presence of power on the set of tracks where the train is located, or (3) at any control point in between, such as when a control panel switch is used to control power to different track sections.

Adjusting Turnouts, Switch Machines & Ground Throws

Turnouts (sometimes called 'switches') are used to send a train from one set of track to another. These are easy places for trains to become derailed because the wheels must pass over a series of changeable mechanical parts that are more complex than the simple two (or three) rails used elsewhere in the layout. The 'points' of a switch are moved between two different resting positions which determine what path the trail will take after it passes through the turnout. These points must rest securely against either the inside or outside rail and must not move otherwise. If the points are moved remotely, by an electrical signal sent from the control panel to a 'switch machine' next to the turnout, then this switch machine and its associated wiring must be in good working order. If the switch is operated by hand using a small lever or 'ground throw' next to the turnout, then the ground throw needs to be kept clean and lubricated and able to move the points the full distance between their two desired positions.

6

Identificar y explicar el uso de:


6a

Cinco tipos de vagones de cargas



6b

Tres tipos de vagones de pasajeros



6c

Tres tipos de locomotoras de vapor en relación a sus ruedas



6d

Dos tipos de alarma de cruce de tren



6e

Dos tipos de señales de tráfico de ferrocarril



6f

Cinco tipos de vías férreas relacionadas con los edificios o estructuras




7

Conocer el significado de los siguientes términos modelos de ferrocarril:


7a

Balasto



7b

Conductores ciegos



7c

Bloquear



7d

Bolster/cojín



7e

Paso a nivel



7f

Cruce de rieles

A place where two railroad tracks cross each other.

7g

Doble cabecera
The use of two locomotives to pull an especially long and heavy train.

7h

Engranajel cabeza de empalme
Part of a railcar's coupling system which allows for some flexing in the tension between cars.

7i

Pestaña
The larger, flat part of a trains wheels that descend below the track's top surface on the inside edge, thus holding the car on the track as it moves.

7j

Cruce (frog)
At the center of a turnout, it is the small X-shaped piece of track that enables a train's wheels to cross over the inside rail.

7k

Distancia/brecha

A space between rails so that they are electrically insulated from one another. This is done so that the two rails do not short together, or so they can be on different circuits.

7l

Ancho de vías (trocha)

=

Sometimes used to describe the size of track and cars used on a certain model railroad, it more accurately measures the space between the rails of that railroad's track.

7m

Pendiente

A measurement of the steepness of the track when it is not flat or level with the ground. It is measured in degrees according to its angle from level ground.

7n

Áreas de gravedad

A place for storing, sorting or processing train cars which uses track set at an angle with the ground in order to let gravity move cars when needed.

7o

Caja caliente

A wheel bearing that has become excessively hot because of friction.

7p

Aislamiento ferrovario
A non-conducting clip, usually made of plastic, that allows two pieces of track to be connected physically while remaining independent electronically. Used between distinct blocks of track.

7q

Diario

A bearing in which the shaft between two wheels rotates against the car's truck with the help of lubrication supplied within a journal box, often seen on a train car's trucks.

7r

Diseño

An arrangement of model railroad track, structures and scenery that models real-life railroad operation in a contained area.

7s

Línea principal

The route a train takes from one destination to another, independent of track used in yards, sidings or spurs.

7t

Prototipo
The real-life railroad operation and equipment upon which a model railroad is based.

7u

Unión de rieles
A metallic clip placed on the bottom flange at the end of a section of track allowing it to be connected both physically and electrically to the next piece of track on the line.

7v

Vuelta de retroceso

A length of track which, by use of one or more turnouts, returns a train to its originating position facing the opposite way from which it left.

7w

Vía muerta/aportado lateral
A section of track that runs parallel to the mainline and allows a train to stop and be passed by another train occupying the same mainline.

7x

Ramal
A dead-end piece of track which accepts cars to be delivered from the mainline or prepared for shipment to another destination via the mainline.

7y

Aguja de cambio

Something which routes power or trains between two or more options. When routing trains, it is best to use 'turnout' to distinguish the track mechanism from the electronic toggle switch that activates it from the layout's control panel.

7z

Máquina

Refers in model railroading to the small mechanism attached to a turnout which allows it to be operated by remote-control from the layout's control panel.

7aa

Camión talgo
A model railroad truck with its own attached coupler. Although Talgo trucks permit model trains to operate on smaller radius curves, they can be more likely to derail when trains are pushed, rather than pulled.

7bb

Camión
A single, solid piece of hardware mounted to the bottom of a railroad car or locomotive to which is attached on or more sets of wheels. On train cars, trucks usually contain two sets of wheels and can swivel beneath the car when the train is navigating a turn.

7cc

Aguja (turnout)

A mechanism for allowing a train to leave one set of tracks and join another. Sometimes called a 'switch.'

7dd

Dos rieles

A standard of model railroading which does not employ a separate (third) rail for power. Layouts using two-rail modeling systems must employ special wiring when a wye or reverse loop exists within the layout's design.

7ee

Triángulo de rieles

A triangle-shaped junction of two railroad lines in which one line joins another with the option of going either direction on the second line.

7ff

Cambio en Y
A turnout in which both branches leave the turnout at a different angle from the original line. Most turnouts have one straight-through line and a single branch that leaves the line in a different direction.

7gg

Yarda
A set of tracks which branch off of the mainline and allow train cars to be sorted, reordered or stored while they are en route to their destination.
For Further Information:

A good glossary of model railroad terms is available under Frequently Asked Questions on the World's Greatest Hobby website

A similar list of terms for prototype railroading can be found under Rail Terminology on Wikipedia.


8

Construir una parte de un modelo de ferrocarril. En la construcción, hacer lo siguiente:
a. Ayudar en el montaje del marco exterior
b. Instalar una sección de basalto
c. Instalar una sección de vías
d. Instalar al menos una vuelta, incluido el cableado
e. Ayudar en la construcción del paisaje como árboles, rocas, montañas o el césped
f. Hacer un modelo de edificio o estructura del tren
g. Asistir en el cableado para el suministro de energía eléctrica a las vías

You can do this on your own, or as part of a club (either a group of Pathfinders earning the honor together, or as part of a model railroading club). Because there are a lot of requirements to meet here, it would be a good idea to make a checklist so you can be sure you have met each.

9

Operar con éxito un modelo de tren de ferrocarril en el paisaje que le han ayudado a realizar.

Once you have built (or have helped build) a model set, how can you pass up the opportunity to operate it? In reality, the set will be operated several times during construction to test each new addition. If possible, why not transport the setup to your church for Pathfinder Sabbath?

References